• Included in Chinese Science Citation Database
  • Included in Scopus
ZHANG Chaofeng, SHI Qianglin, ZHANG Lingjuan. Discussion on the relationship between Cenozoic magmatic activity and geotherm in Tibetan Plateau[J]. Geological Survey of China, 2018, 5(2): 18-24. DOI: 10.19388/j.zgdzdc.2018.02.03
Citation: ZHANG Chaofeng, SHI Qianglin, ZHANG Lingjuan. Discussion on the relationship between Cenozoic magmatic activity and geotherm in Tibetan Plateau[J]. Geological Survey of China, 2018, 5(2): 18-24. DOI: 10.19388/j.zgdzdc.2018.02.03

Discussion on the relationship between Cenozoic magmatic activity and geotherm in Tibetan Plateau

More Information
  • Received Date: December 28, 2017
  • Revised Date: February 20, 2018
  • There are abundant geothermal resources and nearly 700 geothermal display areas (points) in Tibetan Plateau with the characteristics of wide distribution, high temperature and great potentiality. It is necesssary to investigate the distribution regularity and causes of geothermal resources, in order to better evaluate the geothermal resources and explore the exploitation and development plan that conforms to the characteristics of the geothermal resources in Tibetan Plateau. On the basis of summarizing previous studies on the Cenozoic magmatic activity and the characteristics of geothermal resources in Tibetan Plateau, the authors analyzed the controlling factors of geothermal resources distribution from the perspective of geological evolution of the Tibetan Plateau, and discussed the relationship between Cenozoic magmatic activity and the geothermal resources spatial distribution. They focused on the relationship between the geothermal regionalization of Zangnan and the magmatic activity of the Yarlung Zangbo Suture Zone. The results show that the geothermal activity in Tibetan Plateau is controlled by the geological tectonic evolution. And the geothermal activity in southern region is stronger than that in the northern region. The main active area of geothermal activity is the intersection of the EW regional tectonic suture zone and the NS deep fault. The magmatic activity provides the heat source for geothermal resources in the study area.
  • [1]
    汪集暘,龚宇烈,陆振能,等.从欧洲地热发展看我国地热开发利用问题[J].新能源进展,2013,1(1):1-6.
    [2]
    陈墨香. 华北地热[M].北京:科学出版社,1988:11-47.
    [3]
    陈墨香. 中国地热资源[M].北京:科学出版社,1994:5-27.
    [4]
    刘金侠,谷雪曦,李欣,等.我国地热能开发利用现状、问题与展望[J].建设科技,2015(8):27-30.
    [5]
    刘金侠,王燕霞.推进我国地热能利用大发展[J].中国石化,2012(12):30-32.
    [6]
    朱家玲. 地热能开发与应用技术[M].北京:化学工业出版社,2006:1-45.
    [7]
    张梅桂,孙法德,谭世燕.地热资源及其科学利用[J].油气田地面工程,2004,23(4):37-38.
    [8]
    廖忠礼,廖光宇,潘桂棠,等.西藏阿里地热资源的分布特点及开发利用[J].中国矿业,2005,14(8):43-46.
    [9]
    王东升,王经兰.中国地下热水的基本类型和成因特征[J].第四纪研究,1996,16(2):139-146.
    [10]
    欧阳埏. 中国地热成因的研究[C]//中国科学院地球物理研究所论文摘要集.北京:中国岩石力学与工程学会,1989.
    [11]
    何世春. 中国地下热水成因类型及其特征和应用[C]//计算机在地学中的应用国际讨论会论文摘要集.北京:中国地球物理学会,1991:111-117.
    [12]
    中国科学院青藏高原综合科学考察队.西藏地热[M].北京:科学出版社,1984.
    [13]
    张丽红,郭正府,郑国东,等.藏南新生代火山-地热区温室气体的释放通量与成因——以谷露—亚东裂谷为例[J].岩石学报,2017,33(1):250-266.
    [14]
    王鹏,陈晓宏,沈立成,等.西藏地热异常区热储温度及其地质环境效应[J].中国地质,2016,43(4):1429-1438.
    [15]
    吕苑苑,郑绵平,赵平,等.滇藏地热带地热水硼同位素地球化学过程及其物源示踪[J].中国科学:地球科学,2014,44(9):1968-1979.
    [16]
    刘昭,蔺文静,张萌,等.西藏尼木—那曲地热流体成因及幔源流体贡献[J].地学前缘,2014,21(6):356-371.
    [17]
    沈立成,伍坤宇,肖琼,等.西藏地热异常区CO2脱气研究:以朗久和搭格架地热区为例[J].科学通报,2011,56(26):2198-2208.
    [18]
    白嘉启,梅琳,杨美伶.青藏高原地热资源与地壳热结构[J].地质力学学报,2006,12(3):354-362.
    [19]
    李振清,侯增谦,聂凤军,等.西藏地热活动中铯的富集过程探讨[J].地质学报,2006,80(9):1457-1464.
    [20]
    周肃,莫宣学,赵志丹,等.西藏南部羊应乡后碰撞火山岩40Ar/39Ar年龄及其地质意义[J].自然科学进展,2004,14(12):46-53.
    [21]
    赵平,谢鄂军,多吉,等.西藏地热气体的地球化学特征及其地质意义[J].岩石学报,2002,18(4):539-550.
    [22]
    鲁连仲. 西藏地热活动的地质背景分析[J].地球科学: 中国地质大学学报,1989,14(增刊1):53-59.
    [23]
    孙红丽,马峰,刘昭,等.西藏高温地热显示区氟分布及富集特征[J].中国环境科学,2015,35(1):251-259.
    [24]
    康文华,李德禄,白嘉启.西藏羊八井热田地热地质[J].中国地质科学院地质力学研究所所刊,1985(6):17-79.
    [25]
    魏斯禹,张致和,滕古文,等.喜马拉雅地热带的活动特征与板块构造[J].地震研究,1983,6(4):577-590.
    [26]
    佟伟,章铭陶.西藏的地热活动特征及其对高原构造模式的控制意义[J].北京大学学报,1982(1):89-98,114.
    [27]
    西藏地矿局地热地质大队.西藏自治区地热资源区划[R].1990.
    [28]
    西藏地矿局地热地质大队.西藏自治区尼木—那曲地热带地热调查报告[R].1991.
    [29]
    西藏自治区地勘局地热地质大队.西藏地热现状评价和区划[R].2011.
    [30]
    廖志杰. 西藏地热活动的背景及热源问题的讨论[J].北京大学学报,1982(2):70-78.
    [31]
    佟伟,章铭陶,张知非.西藏地热[M].北京:科学出版社,1981.
    [32]
    韩同林. 试论藏南活动构造与地热的关系[M]//喜马拉雅地质文集编辑委员会.喜马拉雅地质II.北京:地质出版社,1990:45-58.
    [33]
    李家振,孙善平,张有瑜,等.西藏羊应乡地热田形成特点及评价探讨[J].现代地质,1994,8(1):49-56.
    [34]
    廖志杰,赵平.滇藏地热带-地热资源和典型地热系统[M].北京:科学出版社,1999:1-147.
    [35]
    潘桂棠,李兴振,王立全,等.青藏高原及邻区大地构造单元初步划分[J].地质通报,2002,21(11):701-707.
    [36]
    多吉. 羊八井高温地热田的深部勘探[M]//郑克棱.中国地热勘查开发100例.北京:地质出版社,2005.
    [37]
    罗照华,莫宣学,侯增谦,等.青藏高原新生代形成演化的整合模型——来自火成岩的约束[J].地学前缘,2006,13(4):196-211.
    [38]
    莫宣学. 岩浆作用与青藏高原演化[J].高校地质学报,2011,17(3):351-367.
    [39]
    刘栋. 青藏高原后碰撞钾质-超钾质岩石的地球化学特征与岩石成因[D].北京:中国地质大学(北京),2017.
    [40]
    何梅兴,张小博,杜炳锐,等.西藏羌塘龙尾湖地区音频大地电磁测深调查[J].工程地球物理学报,2014,11(3):333-337.
    [41]
    闫永利,马晓冰,陈赟,等.西藏错勤—申扎剖面大地电磁测深研究[J].地球物理学报,2012,55(8):2636-2642.
    [42]
    卢景奇,何梅兴,方慧,等.西藏洞错盆地大地电磁测深电性特征[J].物探与化探,2010,34(6):787-790,794.
    [43]
    叶高峰,金胜,魏文博,等.西藏高原中南部地壳与上地幔导电性结构[J].地球科学: 中国地质大学学报,2007,32(4):491-498.
    [44]
    魏文博,金胜,叶高峰,等.藏北高原地壳及上地幔导电性结构——超宽频带大地电磁测深研究结果[J].地球物理学报,2006,49(4):1215-1225.
    [45]
    魏文博,陈乐寿,谭捍东,等.关于印度板块俯冲的探讨——据INDEPTH-MT研究结果[J].现代地质,1997,11(3):379-386.
    [46]
    张胜业,魏胜,王家映,等.西藏羌塘盆地大地电磁测深研究[J].地球科学: 中国地质大学学报,1996,21(2):198-202.
    [47]
    侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地质学报,2009,83(12):1779-1817.
    [48]
    侯增谦,赵志丹,高永丰,等.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据[J].岩石学报,2006,22(4):761-774.
    [49]
    李振清,杨志明,朱祥坤,等.西藏驱龙斑岩铜矿铜同位素研究[J].地质学报,2009,83(12):1985-1996.
    [50]
    张旗,王焰,刘伟,等.埃达克岩的特征及其意义[J].地质通报,2002,21(7):431-435.
  • Related Articles

    [1]HU Junfeng, CHEN Yongling, DAI Xuejian, LI Huaiyuan, QIU Dong, YAN Hao. Radon gas characteristics and activity analysis of hidden faults in Gangga Graben Basin of Dingri County[J]. Geological Survey of China, 2024, 11(1): 45-56. DOI: 10.19388/j.zgdzdc.2024.01.06
    [2]ZENG Yong, LIU Yi, GUO Weimin, SHEN Mangting, XU Ming. Magmatism and tectonic evolution of metamorphic basement in Carajás area of Brazil[J]. Geological Survey of China, 2023, 10(5): 57-70. DOI: 10.19388/j.zgdzdc.2023.05.08
    [3]YANG Songqi, HE Shan, ZHENG Qiugen, TIAN Naxin, TAO Chongzhi, ZHANG Yi. Structural evolution characteristics of Campos Basin of South America and the influence of its tectonic activities on hydrocarbon accumulation conditions[J]. Geological Survey of China, 2023, 10(4): 46-56. DOI: 10.19388/j.zgdzdc.2023.04.06
    [4]TIAN Peng, YANG Zhousheng, YU Congjun, SUN Bin. Chronological evidence of Cenozoic activity in the middle and southern part of Ailao Mountain-Red River fault zone[J]. Geological Survey of China, 2023, 10(2): 42-53. DOI: 10.19388/j.zgdzdc.2023.02.06
    [5]LIU Liangting, XIAO Xiang. Deep-sea carbon cycle under high pressure and its impacts on life activities[J]. Geological Survey of China, 2021, 8(4): 66-78. DOI: 10.19388/j.zgdzdc.2021.04.07
    [6]LIU Liang, LIANG Bin, YAN Zhonglin, SU Hua, HE Xuefeng. Latest active age and model of the faults in Longquanshan fault belt[J]. Geological Survey of China, 2020, 7(5): 77-87. DOI: 10.19388/j.zgdzdc.2020.05.09
    [7]LI Zhonghui, LI Yang, LI Ruijie, LI Kai. Magmatic activity and its geological significance in Early Jurassic in Mangui area of Inner Mongolia[J]. Geological Survey of China, 2020, 7(5): 54-65. DOI: 10.19388/j.zgdzdc.2020.05.07
    [8]WEN Chunhua, LUO Xiaoya, CHEN Jianfeng, LIN Bihai, LI Shengmiao. Relationship between Yanshanian magmatic activity and rare metal mineralization in Mufushan area of Northeast Hunan[J]. Geological Survey of China, 2019, 6(6): 19-28. DOI: 10.19388/j.zgdzdc.2019.06.03
    [9]ZHU Xiaoer, YANG Shangfeng, SHI Chaoqun. Lithology identification and lithofacies distribution of Cenozoic volcanic rocks in Wichian Buri Sub-basin of Phetchabun Basin, Thailand[J]. Geological Survey of China, 2019, 6(2): 48-57. DOI: 10.19388/j.zgdzdc.2019.02.06
    [10]ZHANG Zhaowei, LI Kan, ZHANG Jiangwei, QIAN Bing, WANG Yalei, YOU Minxin. Formation characteristics and prospecting direction of magmatic Ni-Cu sulfide deposits in China[J]. Geological Survey of China, 2016, 3(3): 7-15.
  • Cited by

    Periodical cited type(14)

    1. 李栋,祝杰,叶高峰,金胜,董浩,魏文博. 青藏高原东构造结林芝地热田浅部典型电性结构及热储关系. 地质论评. 2024(02): 577-590 .
    2. 张煜道,谭红兵,丛培鑫,石智伟,杨俊颖. 西藏羊八井—当雄断裂带地热系统B、Li、Rb、Cs富集机制. 沉积学报. 2024(04): 1239-1251 .
    3. 师红杰,刘明亮,卫兴,曹圆圆,尚建波. 西藏玛旁雍错地热水地球化学特征及其成因机制分析. 沉积与特提斯地质. 2023(02): 311-321 .
    4. 谭红兵,石智伟,丛培鑫,薛飞,陈国辉. 西藏地热系统B、Li、Rb和Cs元素空间分布规律与超常富集机制. 沉积与特提斯地质. 2023(02): 404-415 .
    5. 万汉平,张松,高洪雷,郝伟林,胡志华,胡先才,吴儒杰. 西藏谷露地热田水热系统成因机制. 世界核地质科学. 2023(03): 687-700 .
    6. 郭镜,唐发伟,官辉,赵海华,赵小云,旦增国杰,杜炳锐. 青藏高原如角高温地热系统构造-热耦合成热模式. 中国地质. 2023(06): 1621-1631 .
    7. 陈维,葛璐,谭红兵. 西藏谷露—亚东裂谷南部温泉稀土元素特征及其控制因素. 地质论评. 2022(04): 1464-1479 .
    8. 龙登红,周小龙,杨坤光,辜平阳,高银虎,王树明,陈桂凡. 青藏高原东北缘深部地质构造与地热资源分布关系研究. 中国地质. 2021(03): 721-731 .
    9. 杨俊颖,温夏伟,谭红兵. 西藏尼木地区遥感数据地温反演与地热异常预测. 地质论评. 2021(06): 1770-1779 .
    10. 付雷,马鑫,邵炜. 冷水混入模式对藏南隧道高温热害预测的影响. 现代隧道技术. 2021(06): 21-30 .
    11. 庞忠和,罗霁,程远志,段忠丰,天娇,孔彦龙,李义曼,胡圣标,汪集旸. 中国深层地热能开采的地质条件评价. 地学前缘. 2020(01): 134-151 .
    12. 瞿辰,刘晓宇,于常青,胥颐,杨文采. 青藏高原S波和泊松比的层析成像. 地球物理学报. 2020(10): 3640-3652 .
    13. 严健,何川,汪波,蒙伟,吴枋胤. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征. 岩石力学与工程学报. 2019(04): 769-781 .
    14. 陆艺,苏金宝,谭红兵,许鹏,陈振坤. 西藏东南缘地热泉华的地球化学特征和成因. 矿物岩石地球化学通报. 2019(06): 1207-1217+1223 .

    Other cited types(7)

Catalog

    Article views (501) PDF downloads (618) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return