Abstract:
Clarifying the migration conditions of groundwater is the key basis for the protection of urban groundwater sources. In order to serve the sustainable development of the groundwater source in Shenyang, the authors constructed the hydrogeological conceptual model and groundwater numerical model according to the hydrogeological conditions of the study area. The Visual MODFLOW software was used to solve the model, and the model parameters were identified and verified based on the water level data of observation well. The range of groundwater funnel and the depth of water level drop after water source operation were analyzed according to the corrected numerical model, and the water level recovery after the stop-mining of water source was simulated and predicted. The results showed that the total recharge of groundwater aquifer in the study area was 62 230 m
3/d, and the total discharge was 63 400 m
3/d, with equilibrium difference of -1 170 m
3/d. And groundwater dynamic was in a negative equilibrium state for many years. Through the prediction of the confined aquifer situation after 2 a, 5 a and 10 a of water source exploitation, the water level decreased by an average of 6 m, 8 m and 9 m respectively, and the area of the central funnel area was 54.56 km
2, 65.04 km
2 and 65.80 km
2 respectively. The funnel expanded rapidly in the early stage of mining, and then the speed gradually slowed down. The exploitation of confined aquifer in the water source had a certain impact on the surrounding flow field, but this impact was mainly obvious during the mining period, and the funnel area gradually recovered after one year of stop-pumping. It is suggested that the exploitation amount should be strictly controlled and the monitoring and management of groundwater should be strengthened for the sustainable utilization and protection of water source. The prediction results could provide some technical support for water source protection.