[1] |
IPCC.Climate Change 2014:Synthesis Report[R].Geneva,Switzerland:IPCC,2014.
|
[2] |
Friedlingstein P,O’Sullivan M,Jones M W,et al.Global carbon budget 2020[J].Earth Syst Sci Data,2020,12(4):3269-3340.
|
[3] |
Myhre G,Shindell D,Bréon F M,et al.Anthropogenic and Natural Radiative Forcing[C]//Climate Change 2013:the Physical Science Basis:Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013:659-740.
|
[4] |
Tans P.Trends in Atmospheric Carbon Dioxide[EB/OL].[2021-06-28].https://gml.noaa.gov/ccgg/trends/.
|
[5] |
MacFarling M C,Etheridge D,Trudinger C,et al.Law dome CO2,CH4 and N2O ice core records extended to 2000 years BP[J].Geophys Res Lett,2006,33(14):L14810.
|
[6] |
Lüthi D,Le Floch M,Bereiter B,et al.High-resolution carbon dioxide concentration record 650 000-800 000 years before pre-sent[J].Nature,2008,453(7193):379-382.
|
[7] |
Dlugokencky E.Trends in Atmospheric Methane[EB/OL].[2021-06-28].https://gml.noaa.gov/ccgg/trends_ch4/.
|
[8] |
Falkowski P,Scholes R J,Boyle E,et al.The global carbon cycle:A test of our knowledge of earth as a system[J].Science,2000,290(5490):291-296.
|
[9] |
Atwood T B,Witt A,Mayorga J,et al.Global patterns in marine sediment carbon stocks[J].Front Mar Sci,2020,7:165.
|
[10] |
Lee T R,Wood W T,Phrampus B J.A machine learning (kNN) approach to predicting global seafloor total organic carbon[J].Global Biogeochem Cycles,2019,33(1):37-46.
|
[11] |
Estes E R,Pockalny R,D’Hondt S,et al.Persistent organic matter in oxic subseafloor sediment[J].Nat Geosci,2019,12(2):126-131.
|
[12] |
Bianchi T S,Schreiner K M,Smith R W,et al.Redox effects on organic matter storage in coastal sediments during the holocene:a biomarker/proxy perspective[J].Annu Rev Earth Planet Sci,2016,44:295-319.
|
[13] |
Cicerone R J,Oremland R S.Biogeochemical aspects of atmospheric methane[J].Global Biogeochem Cycles,1988,2(4):299-327.
|
[14] |
Archer D.Methane hydrate stability and anthropogenic climate change[J].Biogeosciences,2007,4(4):521-544.
|
[15] |
Kvenvolden K A.Gas hydrates-geological perspective and global change[J].Rev Geophys,1993,31(2):173-187.
|
[16] |
Kvenvolden K A.Methane hydrate in the global organic carbon cycle[J].Terra Nova,2002,14(5):302-306.
|
[17] |
Kvenvolden K A.Methane hydrate---A major reservoir of carbon in the shallow geosphere?[J].Chem Geol,1988,71(1/2/3):41-51.
|
[18] |
Chronopoulou P M,Shelley F,Pritchard W J,et al.Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone[J].ISME J,2017,11(6):1386-1399.
|
[19] |
Schlesinger W H,Bernhardt E S.The oceans[M]//Schlesinger W H,Bernhardt E S.Biogeochemistry:An Analysis of Global Change.4th ed.Amsterdam:Elsevier,2020:361-432.
|
[20] |
Skinner L C,Primeau F,Freeman E,et al.Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2[J].Nat Commun,2017,8:16010.
|
[21] |
Rae J W B,Burke A,Robinson L F,et al.CO2 storage and release in the deep Southern Ocean on millennial to centennial timesca-les[J].Nature,2018,562(7728):569-573.
|
[22] |
Feely R A,Sabine C L,Lee K,et al.Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J].Science,2004,305(5682):362-366.
|
[23] |
Berner R A.A model for calcium,magnesium and sulfate in seawater over Phanerozoic time[J].Am J Sci,2004,304(5):438-453.
|
[24] |
Ridgwell A,Zeebe R E.The role of the global carbonate cycle in the regulation and evolution of the Earth system[J].Earth Planet Sci Lett,2005,234(3/4):299-315.
|
[25] |
Sulpis O,Boudreau B P,Mucci A,et al.Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2[J].Proc Natl Acad Sci USA,2018,115(46):11700-11705.
|
[26] |
Berelson W M,Balch W M,Najjar R,et al.Relating estimates of CaCO3 production,export,and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor:A revised global carbonate budget[J].Global Biogeochem Cycles,2007,21(1):GB1024.
|
[27] |
Behrenfeld M J,Falkowski P G.Photosynthetic rates derived from satellite-based chlorophyll concentration[J].Limnol Oceanogr,1997,42(1):1-20.
|
[28] |
Quay P D,Peacock C,Björkman K,et al.Measuring primary production rates in the ocean:Enigmatic results between incubation and non-incubation methodsat Station ALOHA[J].Global Biogeochem Cycles,2010,24(3):GB3014.
|
[29] |
Lee K.Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon[J].Limnol Oceanogr,2001,46(6):1287-1297.
|
[30] |
Ridgwell A,Arndt S.Why dissolved organics matter:DOC in Ancient Oceans and Past Climate Change[M]//Hansell D A,Carlson C A.Biogeochemistry of Marine Dissolved Organic Matter.2nd ed.New York:Academic Press,2015:1-20
|
[31] |
Garcia H E,Weathers K W,Paver C R,et al.World Ocean Atlas 2018,Volume 4:Dissolved Inorganic Nutrients (Phosphate,Nitrate and Nitrate+Nitrite,Silicate).A.mishonov technical editor[R].NOAA Atlas NESDIS 84,Silver Spring:U.S.Department of Commerce,National Oceanic and Atmospheric Administration,2019:35.
|
[32] |
Hansell D A,Carlson C A,Repeta D J,et al.Dissolved organic matter in the ocean:a controversy stimulates new insights[J].Oceanography,2009,22(4):202-211.
|
[33] |
焦念志,张传伦,李超,等.海洋微型生物碳泵储碳机制及气候效应[J].中国科学:地球科学,2013,43(1):1-18. Jiao N Z,Zhang C L,Li C,et al.Controlling mechanisms and climate effects of microbial carbon pump in the ocean[J].Sci Sin Terr,2013,43(1):1-18.
|
[34] |
焦念志,汤凯,张瑶,等.海洋微型生物储碳过程与机制概论[J].微生物学通报,2013,40(1):71-86. Jiao N Z,Tang K,Zhang Y,et al.Microbial processes and mechanisms in carbon sequestration in the ocean[J].Microbiol China,2013,40(1):71-86.
|
[35] |
Jiao N Z,Cai R H,Zheng Q,et al.Unveiling the enigma of refractory carbon in the ocean[J].Natl Sci Rev,2018,5(4):459-463.
|
[36] |
Koch B P,Dittmar T.From mass to structure:An aromaticity index for high-resolution mass data of natural organic matter[J].Ra-pid Commun Mass Spectrom,2006,20(5):926-932.
|
[37] |
Medeiros P M,Seidel M,Powers L C,et al.Dissolved organic matter composition and photochemical transformations in the northern North Pacific Ocean[J].Geophys Res Lett,2015,42(3):863-870.
|
[38] |
Legendre L,Rivkin R B,Weinbauer M G,et al.The microbial carbon pump concept:Potential biogeochemical significance in the globally changing ocean[J].Prog Oceanogr,2015,134:432-450.
|
[39] |
Polimene L,Rivkin R B,Luo Y W,et al.Modelling marine DOC degradation time scales[J].Natl Sci Rev,2018,5(4):468-474.
|
[40] |
Ruppel C D,Kessler J D.The interaction of climate change and methane hydrates[J].Rev Geophys,2017,55(1):126-168.
|
[41] |
Reeburgh W S.Oceanic methane biogeochemistry[J].Chem Rev,2007,107(2):486-513.
|
[42] |
Crémière A,Lepland A,Chand S,et al.Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet[J].Nat Commun,2016,7:11509.
|
[43] |
Vielstädte L,Karstens J,Haeckel M,et al.Quantification of methane emissions at abandoned gas wells in the Central North Sea[J].Mar Pet Geol,2015,68:848-860.
|
[44] |
Crespo-Medina M,Meile C D,Hunter K S,et al.The rise and fall of methanotrophy following a deepwater oil-well blow-out[J].Nat Geosci,2014,7(6):423-427.
|
[45] |
Karl D M,Church M J,Dore J E,et al.Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation[J].Proc Natl Acad Sci USA,2012,109(6):1842-1849.
|
[46] |
Arístegui J,Gasol J M,Duarte C M,et al.Microbial oceanography of the dark ocean’s pelagic realm[J].Limnol Oceanogr,2009,54(5):1501-1529.
|
[47] |
Baltar F,Arístegui J,Gasol J M,et al.Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic[J].Limnol Oceanogr,2009,54(1):182-193.
|
[48] |
Reinthaler T,Van Aken H M,Herndl G J.Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior[J].Deep Sea Res Part II Top Stud Oceanogr,2010,57(16):1572-1580.
|
[49] |
Herndl G J,Reinthaler T,Teira E,et al.Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean[J].Appl Environ Microbiol,2005,71(5):2303-2309.
|
[50] |
Reinthaler T,Van Aken H,Veth C,et al.Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin[J].Limnol Oceanogr,2006,51(3):1262-1273.
|
[51] |
Salazar G,Cornejo-Castillo F M,Benítez-Barrios V,et al.Glo-bal diversity and biogeography of deep-sea pelagic prokaryo-tes[J].ISME J,2016,10(3):596-608.
|
[52] |
Sul W J,Oliver T A,Ducklow H W,et al.Marine bacteria exhibit a bipolar distribution[J].Proc Natl Acad Sci USA,2013,110(6):2342-2347.
|
[53] |
Petro C,Starnawski P,Schramm A,et al.Microbial community assembly in marine sediments[J].Aquat Microb Ecol,2017,79(3):177-195.
|
[54] |
Ducklow H W,Steinberg D K,Buesseler K O.Upper ocean carbon export and the biological pump[J].Oceanography,2001,14(4):50-58.
|
[55] |
Nagata T.Organic Matter-bacteria Interactions in Seawater[M]//Kirchman D L.Microbial Ecology of the Oceans.2nd ed.Hoboken:John Wiley & Sons,2008:207-241.
|
[56] |
Long R A,Azam F.Antagonistic interactions among marine pela-gic bacteria[J].Appl Environ Microbiol,2001,67(11):4975-4983.
|
[57] |
Gram L,Grossart H P,Schlingloff A,et al.Possible quorum sensing in marine snow bacteria:Production of acylated homoserine lactones by Roseobacter strains isolated from marine snow[J].Appl Environ Microbiol,2002,68(8):4111-4116.
|
[58] |
Simon M,Grossart H P,Schweitzer B,et al.Microbial ecology of organic aggregates in aquatic ecosystems[J].Aquat Microb Ecol,2002,28(2):175-211.
|
[59] |
Smith D C,Simon M,Alldredge A L,et al.Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution[J].Nature,1992,359(6391):139-142.
|
[60] |
Borch N H,Kirchman D L.Protection of protein from bacterial degradation by submicron particles[J].Aquat Microb Ecol,1999,16(3):265-272.
|
[61] |
Keil R G,Kirchman D L.Utilization of dissolved protein and amino acids in the northern Sargasso Sea[J].Aquat Microb Ecol,1999,18(3):293-300.
|
[62] |
Rahav E,Silverman J,Raveh O,et al.The deep water of Eastern Mediterranean Sea is a hotspot for bacterial activity[J].Deep Sea Res Part II Top Stud Oceanogr,2019,164:135-143.
|
[63] |
Kawasaki N,Benner R.Bacterial release of dissolved organic matter during cell growth and decline:Molecular origin and composition[J].Limnol Oceanogr,2006,51(5):2170-2180.
|
[64] |
Ogawa H,Amagai Y,Koike I,et al.Production of refractory dissolved organic matter by bacteria[J].Science,2001,292(5518):917-920.
|
[65] |
Lomstein B A,Jørgensen B B,Schubert C J,et al.Amino acid biogeo- and stereochemistry in coastal Chilean sediments[J].Geochim Cosmochim Acta,2006,70(12):2970-2989.
|
[66] |
Lechtenfeld O J,Hertkorn N,Shen Y,et al.Marine sequestration of carbon in bacterial metabolites[J].Nat Commun,2015,6:6711.
|
[67] |
Hertkorn N,Harir M,Koch B P,et al.High-field NMR spectroscopy and FTICR mass spectrometry:Powerful discovery tools for the molecular level characterization of marine dissolved organic matter[J].Biogeosciences,2013,10(3):1583-1624.
|
[68] |
Hertkorn N,Benner R,Frommberger M,et al.Characterization of a major refractory component of marine dissolved organic mat-ter[J].Geochim Cosmochim Acta,2006,70(12):2990-3010.
|
[69] |
Arístegui J,Duarte C M,Agustí S,et al.Dissolved organic carbon support of respiration in the dark ocean[J].Science,2002,298(5600):1967.
|
[70] |
Lauro F M,McDougald D,Thomas T,et al.The genomic basis of trophic strategy in marine bacteria[J].Proc Natl Acad Sci USA,2009,106(37):15527-15533.
|
[71] |
Lauro F M,Bartlett D H.Prokaryotic lifestyles in deep sea habi-tats[J].Extremophiles,2008,12(1):15-25.
|
[72] |
Yokokawa T,Yang Y H,Motegi C,et al.Large-scale geographical variation in prokaryotic abundance and production in meso- and bathypelagic zones of the central Pacific and Southern Ocean[J].Limnol Oceanogr,2013,58(1):61-73.
|
[73] |
Herndl G J,Reinthaler T.Microbial control of the dark end of the biological pump[J].Nat Geosci,2013,6(9):718-724.
|
[74] |
Wuchter C,Abbas B,Coolen M J L,et al.Archaeal nitrification in the ocean[J].Proc Natl Acad Sci USA,2006,103(33):12317-12322.
|
[75] |
Anantharaman K,Breier J A,Sheik C S,et al.Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria[J].Proc Natl Acad Sci USA,2013,110(1):330-335.
|
[76] |
Swan B K,Martinez-Garcia M,Preston C M,et al.Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean[J].Science,2011,333(6047):1296-1300.
|
[77] |
Stahl D A,de la Torre J R.Physiology and diversity of ammonia-oxidizing archaea[J].Annu Rev Microbiol,2012,66(1):83-101.
|
[78] |
Brochier-Armanet C,Boussau B,Gribaldo S,et al.Mesophilic crenarchaeota:Proposal for a third archaeal phylum,the Thaumarchaeota[J].Nat Rev Microbiol,2008,6(3):245-252.
|
[79] |
Martens-Habbena W,Berube P M,Urakawa H,et al.Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria[J].Nature,2009,461(7266):976-979.
|
[80] |
Nunoura T,Takaki Y,Hirai M,et al.Hadal biosphere:Insight into the microbial ecosystem in the deepest ocean on Earth[J].Proc Natl Acad Sci USA,2015,112(11):E1230-E1236.
|
[81] |
Karner M B,DeLong E F,Karl D M.Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J].Nature,2001,409(6819):507-510.
|
[82] |
Nunoura T,Nishizawa M,Hirai M,et al.Microbial diversity in sediments from the bottom of the challenger deep,the mariana trench[J].Microbes Environ,2018,33(2):186-194.
|
[83] |
Zhang Y,Qin W,Hou L,et al.Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean[J].Proc Natl Acad Sci USA,2020,117(9):4823-4830.
|
[84] |
Sintes E,Bergauer K,De Corte D,et al.Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean[J].Environ Microbiol,2013,15(5):1647-1658.
|
[85] |
Santoro A E,Saito M A,Goepfert T J,et al.Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation[J].Limnol Oceanogr,2017,62(5):1984-2003.
|
[86] |
Santoro A E,Casciotti K L,Francis C A.Activity,abundance and diversity of nitrifying archaea and bacteria in the central California current[J].Environ Microbiol,2010,12(7):1989-2006.
|
[87] |
Könneke M,Schubert D M,Brown P C,et al.Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation[J].Proc Natl Acad Sci USA,2014,111(22):8239-8244.
|
[88] |
Wang Y,Huang J M,Cui G J,et al.Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep oc-ean[J].Environ Microbiol,2019,21(2):716-729.
|
[89] |
Qin W,Amin S A,Martens-Habbena W,et al.Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation[J].Proc Natl Acad Sci USA,2014,111(34):12504-12509.
|
[90] |
Offre P,Kerou M,Spang A,et al.Variability of the transporter gene complement in ammonia-oxidizing archaea[J].Trends Microbiol,2014,22(12):665-675.
|
[91] |
Kim J G,Park S J,Sinninghe Damsté J S,et al.Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea[J].Proc Natl Acad Sci USA,2016,113(28):7888-7893.
|
[92] |
Kuypers M M M,Blokker P,Erbacher J,et al.Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic ev-ent[J].Science,2001,293(5527):92-95.
|
[93] |
Bhattarai S,Cassarini C,Lens P N L.Physiology and distribution of archaeal methanotrophs that couple anaerobic oxidation of methane with sulfate reduction[J].Microbiol Mol Biol Rev,2019,83(3):e00074-18.
|
[94] |
Knittel K,Boetius A.Anaerobic oxidation of methane:Progress with an unknown process[J].Annu Rev Microbiol,2009,63:311-334.
|
[95] |
Cui M M,Ma A Z,Qi H Y,et al.Anaerobic oxidation of methane:An "active" microbial process[J].Microbiologyopen,2015,4(1):1-11.
|
[96] |
Scheller S,Goenrich M,Boecher R,et al.The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of meth-ane[J].Nature,2010,465(7298):606-608.
|
[97] |
Wegener G,Krukenberg V,Riedel D,et al.Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria[J].Nature,2015,526(7574):587-590.
|
[98] |
Mozhaev V V,Heremans K,Frank J,et al.High pressure effects on protein structure and function[J].Proteins,1996,24(1):81-91.
|
[99] |
Balny C,Masson P,Heremans K.High pressure effects on biological macromolecules:From structural changes to alteration of cellular processes[J].Biochim Biophys Acta-Protein Struct Mol Enzymol,2002,1595(1/2):3-10.
|
[100] |
Winter R.Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases,model biomembranes and proteins in solution at high pressure[J].Biochim Biophys Acta-Protein Struct Mol Enzymol,2002,1595(1/2):160-184.
|
[101] |
Bartlett D H.Pressure effects on in vivo microbial processes[J].Biochim Biophys Acta-Protein Struct Mol Enzymol,2002,1595(1/2):367-381.
|
[102] |
Xie Z,Jian H H,Jin Z,et al.Enhancing the adaptability of the deep-sea bacterium Shewanella piezotolerans WP3 to high pressure and low temperature by experimental evolution under H2O2 stress[J].Appl Environ Microbiol,2018,84(5):e02342-17.
|
[103] |
Tahara E B,Navarete F D T,Kowaltowski A J.Tissue-,substrate-,and site-specific characteristics of mitochondrial reactive oxygen species generation[J].Free Radic Biol Med,2009,46(9):1283-1297.
|
[104] |
Xiao X,Zhang Y.Life in extreme environments:Approaches to study life-environment co-evolutionary strategies[J].Sci China Earth Sci,2014,57(5):869-877.
|
[105] |
Yang S S,Lv Y X,Liu X P,et al.Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea[J].Nat Commun,2020,11:3941.
|
[106] |
Zhang Y,Henriet J P,Bursens J,et al.Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor[J].Bioresour Technol,2010,101(9):3132-3138.
|
[107] |
Jiao N Z,Liu J H,Jiao F L,et al.Microbes mediated comprehensive carbon sequestration for negative emissions in the ocean[J].Natl Sci Rev,2020,7(12):1858-1860.
|