Remote sensing investigation progresses for environmental geology of the typical areas in the west of Tianshuihai, West Kunlun
-
摘要: 随着中国经济的高速发展,了解西昆仑地区环境地质演变有着重要意义,尤其对边境地区的国防建设具有重要的战略意义。为此,利用国产高分一号(GF-1)卫星数据在西昆仑甜水海西典型地区进行1:5万比例尺的环境地质遥感调查,并利用3期不同时相的遥感数据作参照,定性与定量相结合,综合分析了该地区环境地质近20 a的演变。该区以冻融荒漠化和水蚀荒漠化为主,1993—2013年间,区内荒漠化面积不断增加,尤其是冻融荒漠化面积增加了2.29 km2,地质环境、地形地貌等自然因素决定了荒漠化的整体空间分布特征; 同期的湖泊、沼泽面积也呈逐年增加态势,反映了当地气候逐渐变暖的现象。区域荒漠化加剧,容易诱发滑坡、泥石流和沉陷等地质灾害,损毁道路,严重影响着该地区经济发展和国防建设。在自然地理条件恶劣、交通条件不便的地区,高分辨率遥感技术可以发挥其强大的地质判析力。Abstract: With the rapid development of Chinese economy, it is of great significance to understand the evolution of environmental geology in West Kunlun area, especially for the national defense construction in border areas. This study has used GF-1 Satellite to conduct an environmental geological remote sensing survey of 1:50 000 scale in the typical areas of the west of Tianshuihai, West Kunlun, and remote sensing data of three different phases are also used for reference. The study analyzes the evolution of environmental geology in this area over the past 20 years in a comprehensive way with the combination of qualitative and quantitative methods. Freeze-thaw desertification and water-eroded desertification are the main landforms in this area. From 1993 to 2013, desertification in the study area has increased, and in particucar, the freeze-thaw desertification area has increased by 2.29 km2. Geological environment, topography and other natural factors has determined the overall spatial distribution of desertification. Lakes and swamps have also increased gradually, which reflects the local climate warming sensitively. Desertification could flood roads and easily induce landslide, mud-rock flow , subsidence and other geological disasters. It can also serious effect the economic development and national defense construction in the areas. The high resolution remote sensing technology can play a powerful role in geological analysis of areas with poor natural geographical and inconvenient traffic conditions.
-
-
[1] 聂洪峰,方洪宾,杨金中,等.国土遥感综合调查工程总体目标的设计与实现[J].中国地质调查,2016,3(5):1-6. [2] 张焜,李晓民,马世斌,等.GF-1图像在中印边境楚鲁松杰村地质灾害调查中的应用[J].国土资源遥感,2016,28(2):139-148. [3] 李森,高尚玉,杨萍,等.青藏高原冻融荒漠化的若干问题——以藏西—藏北荒漠化区为例[J].冰川冻土,2005,27(4):476-484. [4] 贾跃平.环境地质遥感[J].遥感技术与应用,1994,9(2):44-49. [5] 方洪宾,赵福岳,路云阁,等.青藏高原生态地质环境遥感调查研究[J].国土资源遥感,2007,74(4):61-65. [6] 许向宁,黄润秋,秦举礼.生态环境地质调查与3S技术应用——以川南安宁河流域生态环境地质调查为例[J].地质通报,2003,22(11/12):999-1005. [7] 王文霞.遥感技术在环境地质调查中的应用[J].工业工程与技术,2014(6):54. [8] 王治华.数字滑坡技术及其典型应用[J].中国地质调查,2016,3(3):47-54. [9] 殷跃平,张永双,伍法权,等.汶川地震地质灾害调查成果与展望[J].中国地质调查,2014,1(1):1-9. [10] 杨显华,黄洁,田立,等.四川省矿山遥感监测主要成果与进展[J].中国地质调查,2016,3(5):41-47. [11] 尹嘉珉,乔俊军.新疆维吾尔自治区地图册[M].北京:中国地图出版社,2003. [12] 崔建堂,王炬川,边小卫,等.岔路口幅(I44 C 001001)1:250 000区域地质调查报告[R].陕西省地质调查院,2006. [13] 刘刚,燕云鹏,刘建宇.中国西部艰险地区遥感地质综合调查工作指南[M].北京:地质出版社,2016. [14] 张瑞江.青藏高原冰川演变与生态地质环境响应[J].中国地质调查,2016,3(2):46-50. [15] 李亚云,杨秀春,朱晓华,等.遥感技术在中国土地荒漠化监测中的应用进展[J].地理科学进展,2009,28(1):55-62. [16] 童立强,李丽.三峡库区水蚀荒漠化遥感调查与监测[J].国土资源遥感,2012,24(1):100-103. [17] 刘爱霞.中国及中亚地区荒漠化遥感监测研究[D].北京:中国科学院遥感应用研究所,2004. [18] 尕玛多吉.西藏冰川近30年退缩幅度为此前200年之和[N].光明日报,2015-07-18(01). [19] 张瑞江,方洪宾,赵福岳.青藏高原近30年来现代冰川的演化特征[J].国土资源遥感,2010(增刊):49-53. -
期刊类型引用(4)
1. 陈俊翰,卢琦,刘雨晴,何晨阳,闫峰. 青藏高原冻融荒漠化退化区分布及影响因素. 水土保持研究. 2023(03): 103-110+120 . 百度学术
2. 李娜,董新丰,甘甫平,闫柏琨,朱婉菁. 高光谱遥感技术在基岩区区域地质调查填图中的应用. 地质通报. 2021(01): 13-21 . 百度学术
3. 任磊. 新疆火烧云—大红柳滩铅锌锂资源基地矿产资源开发对地质环境影响分析. 城市地质. 2020(03): 276-282 . 百度学术
4. 侯德华,张立国,王硕,王金贵,程州. 基于GF-2影像西藏桑耶地区岩性-构造遥感解译. 中国地质调查. 2018(05): 66-73 . 本站查看
其他类型引用(1)
计量
- 文章访问数: 402
- HTML全文浏览量: 0
- PDF下载量: 407
- 被引次数: 5